Принципы и методы системного анализа. Системный анализ В чем заключается системный анализ

Системный анализ – это методология теории систем, заключающаяся в исследовании любых объектов, представляемых в качестве систем, проведении их структуризации и последующего анализа. Главная особенность

системного анализа заключается в том, что он включает в себя не только методы анализа (от греч. analysis – расчленение объекта на элементы), но и методы синтеза (от греч. synthesis – соединение элементов в единое целое).

Главная цель системного анализа – обнаружить и устранить неопределенность при решении сложной проблемы на основе поиска наилучшего решения из существующих альтернатив.

Проблема в системном анализе – это сложный теоретический или практический вопрос, требующий разрешения. В основе любой проблемы лежит разрешение какого-либо противоречия. Например, выбор инновационного проекта, который отвечал бы стратегическим целям предприятия и его возможностям, является определенной проблемой. Поэтому поиск наилучших решений при выборе инновационных стратегий и тактики инновационной деятельности нужно осуществлять на основе системного анализа. Реализация инновационных проектов и инновационной деятельности всегда связана с элементами неопределенности, которые возникают в процессе нелинейного развития, как самих этих систем, так и систем окружения.

В основе методологии системного анализа лежат операции количественного сравнения и выбора альтернатив в процессе принятия решения, подлежащего реализации. Если требование критериев качества альтернатив выполнено, то могут быть получены их количественные оценки. Для того чтобы количественные оценки позволяли вести сравнение альтернатив, они должны отражать участвующие в сравнении критерии выбора альтернатив (результат, эффективность, стоимость и др.).

В системном анализе решение проблемы определяется как деятельность, которая сохраняет или улучшает характеристики системы или создает новую систему с заданными качествами. Приемы и методы системного анализа направлены на разработку альтернативных вариантов решения проблемы, выявление масштабов неопределенности по каждому варианту и сопоставление вариантов по их эффективности (критериям). Причем критерии выстраиваются па приоритетной основе. Системный анализ можно представить в виде совокупности основных логических элементов:

  • – цель исследования – решение проблемы и получение результата;
  • – ресурсы – научные средства решения проблемы (методы);
  • – альтернативы – варианты решений и необходимость выбора одного из нескольких решений;
  • – критерии – средство (признак) оценки решаемости проблемы;
  • – модель создания новой системы.

Причем формулирование цели системного анализа играет определяющую роль, так как она дает зеркальное отражение существующей проблемы, желаемый результат ее решения и описание ресурсов, с помощью которых можно достигнуть этого результата (рис. 4.2).

Рис. 4.2.

Цель конкретизируется и трансформируется применительно к исполнителям и условиям. Цель более высокого порядка всегда содержит исходную неопределенность, которую необходимо учитывать. Несмотря на это, цель должна быть определенной и однозначной. Ее постановка должна допускать инициативу исполнителей. "Гораздо важнее выбрать “правильную” цель, чем “правильную” систему", – указал Холл, автор книги по системотехнике; "выбрать не ту цель – значит решить не ту задачу; а выбрать не ту систему – значит просто выбрать неоптимальную систему".

Если располагаемые ресурсы не могут обеспечить реализацию поставленной цели, то мы получим не планируемые результаты. Цель – это и есть желаемый результат. Поэтому для реализации целей должны быть выбраны соответствующие ресурсы. Если ресурсы ограничены, то надо корректировать цель, т.е. планировать те результаты, которые можно получить при данном наборе ресурсов. Поэтому формулирование целей в инновационной деятельности должно иметь конкретные параметры.

Основные задачи системного анализа:

  • задача декомпозиции, т.е. разложение системы (проблемы) на отдельные подсистемы (задачи);
  • задача анализа заключается в определении законов и закономерностей поведения системы посредством обнаружения системных свойств и атрибутов;
  • задача синтеза еводится к созданию новой модели еистемы, определению ее структуры и параметров на основе полученных при решении задач знаний и информации.

Общая структура системного анализа представлена в табл. 4.1.

Таблица 4.1

Основные задачи и функции системного анализа

Структура системного анализа

декомпозиция

Определение и декомпозиция общей цели, основной функции

Функциональноструктурный анализ

Разработка новой модели системы

Выделение системы из среды

Морфологический анализ (анализ взаимосвязи компонентов)

Структурный синтез

Описание воздействующих факторов

Генетический анализ (анализ предыстории, тенденций, прогнозирование)

П араметрически й синтез

Описание тенденций развития, неопределенностей

Анализ аналогов

Оценка новой системы

Описание как "черного ящика"

Анализ эффективности

Функциональная, компонентная и структурная декомпозиция

Формирование требований к создаваемой системе

В концепции системного анализа процесс решения любой сложной проблемы рассматривается в качестве решения системы взаимосвязанных задач, каждая из которых решается своими предметными методами, а затем производится синтез этих решений, оцениваемый критерием (или критериями) достижения решаемости данной задачи. Логическая структура процесса принятия решений в рамках системного анализа представлена на рис. 4.3.

Рис. 4.3.

В инновационной деятельности не может быть готовых моделей решений, так как условия осуществления инноваций могут меняться, нужна методика, позволяющая на определенном этапе формировать модель решения, адекватную существующим условиям.

Для принятия "взвешенных" проектных, управленческих, социальных, экономических и других решений необходим широкий охват и всесторонний анализ факторов, существенно влияющих на решаемую проблему.

Системный анализ основывается на множестве принципов, которые определяют его основное содержание и отличие от других видов анализа. Это необходимо знать, понимать и применять в процессе реализации системного анализа инновационной деятельности.

К ним относятся следующие принципы :

  • 1) конечной цели – формулирование цели исследования, определение основных свойств функционирующей системы, ее назначения (целеполагания), показателей качества и критериев оценки достижения цели;
  • 2) измерения. Суть этого принципа в сопоставимости параметров системы с параметрами системы высшего уровня, т.е. внешней среды. О качестве функционирования какой-либо системы можно судить только относительно ее результатов к надсистеме, т.е. для определения эффективности функционирования исследуемой системы надо представить ее в качестве части системы высшего уровня и проводить оценку ее результатов относительно целей и задач надсистемы или окружающей среды;
  • 3) эквифинальности – определение формы устойчивого развития системы по отношению к начальным и граничным условиям, т.е. определение ее потенциальных возможностей. Система может достигнуть требуемого конечного состояния независимо от времени и определяемого исключительно собственными характеристиками системы при различных начальных условиях и различными путями;
  • 4) единства – рассмотрение системы как целого и совокупности взаимосвязанных элементов. Принцип ориентирован на "взгляд внутрь" системы, на расчленение ее с сохранением целостных представлений о системе;
  • 5) взаимосвязи – процедуры определения связей, как внутри самой системы (между элементами), так и с внешней средой (с другими системами). В соответствии с этим принципом исследуемую систему, в первую очередь, следует рассматривать как часть (элемент, подсистему) другой системы, называемой надсистемой;
  • 6) модульного построения – выделение функциональных модулей и описание совокупности их входных и выходных параметров, что позволяет избежать излишней детализации для создания абстрактной модели системы. Выделение модулей в системе позволяет рассматривать ее как совокупность модулей;
  • 7) иерархии – определение иерархии функционально-структурных частей системы и их ранжирование, что упрощает разработку новой системы и устанавливает порядок ее рассмотрения (исследования);
  • 8) функциональности – совместное рассмотрение структуры и функций системы. В случае внесения новых функций в систему следует разрабатывать и новую структуру, а не включать новые функции в старую структуру. Функции связаны с процессами, которые требуют анализа различных потоков (материальных, энергии, информации), что в свою очередь отражается на состоянии элементов системы и самой системы в целом. Структура всегда ограничивает потоки в пространстве и во времени;
  • 9) развития – определение закономерностей ее функционирования и потенциала к развитию (или росту), адаптации к изменениям, расширению, усовершенствованию, встраивание новых модулей на основе единства целей развития;
  • 10) децентрализации – сочетание функций централизации и децентрализации в системе управления;
  • 11) неопределенности – учет факторов неопределенности и случайных факторов воздействия, как в самой системе, так и со стороны внешней среды. Идентификация факторов неопределенности в качестве факторов риска позволяет их анализировать и создавать систему управления рисками.

Принцип конечной цели служит для определения абсолютного приоритета конечной (глобальной) цели в процессе проведения системного анализа. Этот принцип диктует следующие правила:

  • 1) сначала необходимо сформулировать цели исследования;
  • 2) анализ проводится на основе основной цели системы. Это дает возможность определить ее основные существенные свойства, индикаторы качества и критерии оценки;
  • 3) в процессе синтеза решений любые изменения нужно оценивать с позиций достижения конечной цели;
  • 4) цель функционирования искусственной системы задается, как правило, надсистемой, в которой исследуемая система является составной частью .

Процесс реализации системного анализа при решении любой проблемы можно охарактеризовать в качестве последовательности основных этапов (рис. 4.4).

Рис. 4.4.

На этапе декомпозиции осуществляются:

  • 1) определение и декомпозиция общих целей решения проблемы, основной функции системы как ограничения развития в пространстве, состояния системы или области допустимых условий существования (определяются дерево целей и дерево функций);
  • 2) выделение системы из среды по критерию участия каждого элемента системы в процессе, приводящем к искомому результату на основе рассмотрения системы в качестве составной части надсистемы;
  • 3) определение и описание воздействующих факторов;
  • 4) описание тенденций развития и неопределенностей разного вида;
  • 5) описание системы как "черного ящика";
  • 6) декомпозиция системы по функциональному признаку, по виду входящих в нее элементов, но структурным особенностям (по виду отношений между элементами).

Уровень декомпозиции определяется исходя из поставленной цели исследования. Декомпозиция осуществляется в виде подсистем, которые могут представлять собой последовательное (каскадное) соединение элементов, параллельное соединение элементов и соединение элементов с обратной связью.

На этапе анализа осуществляется детальная проработка системы, которая включает:

  • 1) функционально-структурный анализ существующей системы, позволяющий сформулировать требования к новой системе. Он включает уточнение состава и закономерностей функционирования элементов, алгоритмы функционирования и взаимодействия подсистем (элементов), разделение управляемых и неуправляемых характеристик, задание пространства состояния, временны́х параметров, анализ целостности системы, формирование требований к создаваемой системе;
  • 2) анализ взаимосвязей компонентов (морфологический анализ);
  • 3) генетический анализ (предыстория, причины развития ситуации, имеющихся тенденций, построение прогнозов);
  • 4) анализ аналогов;
  • 5) анализ эффективности результатов, использования ресурсов, своевременности и оперативности. Анализ включает в себя выбор шкал измерения, формирование индикаторов и критериев эффективности, оценку результатов;
  • 6) формулирование требований к системе, формулирование критериев для оценки и ограничений.

В процессе анализа используют различные способы решения задач.

На этапе синтеза :

  • 1) создастся модель требуемой системы. Сюда входят: определенный математический аппарат, моделирование, оценивание модели на адекватность, эффективность, простоту, погрешности, баланс между сложностью и точностью, различные варианты реализации, блочность и системность построения;
  • 2) производится синтез альтернативных структур системы, позволяющих решить проблему;
  • 3) производится синтез различных параметров системы, с целью устранить проблему;
  • 4) производится оценка вариантов синтезированной системы с обоснованием самой схемы оценки, обработкой результатов и выбора самого эффективного решения;
  • 5) оценка степени решения проблемы осуществляется при завершении системного анализа.

Что касается методов системного анализа, то следует их рассмотреть более подробно, так как их количество достаточно велико и предполагает возможность их использования при решении конкретных задач в процессе декомпозиции проблемы. Особое место в системном анализе занимает метод моделирования, который реализует принцип адекватности в теории систем, т.е. описание системы в качестве адекватной модели. Модель – эго упрощенное подобие сложного объекта-системы, в котором сохраняются ее характерные свойства.

В системном анализе метод моделирования играет определяющую роль, так как любая реальная сложная система при исследовании и проектировании может быть представлена только определенной моделью (концептуальной, математической, структурной и т.п.).

В системном анализе применяются специальные методы моделирования:

  • – имитационное моделирование, на основе методов статистики и языков программирования;
  • – ситуативное моделирование, на основе методов теории множеств, теории алгоритмов, математической логики и представления проблемных ситуаций;
  • – информационное моделирование, на основе математических методов теории информационного поля и информационных цепей.

Кроме того в системном анализе широко используют методы индукционного и редукционного моделирования.

Индукционное моделирование осуществляется с целью получения сведений о специфике объекта-системы, ее структуре и элементах, способах их взаимодействия на основе анализа частного и приведения этих сведений к общему описанию. Индуктивный метод моделирования сложных систем используется в том случае, когда невозможно адекватно представить модель внутренней структуры объекта. Это метод позволяет создать обобщенную модель объекта-системы, сохраняя специфику организационных свойств, связей и отношений между элементами, что отличает ее от другой системы. При построении такой модели часто используют методы логики теории вероятностей, т.е. такая модель становится логической или гипотетической. Затем определяются обобщенные параметры структурно-функциональной организации системы и описываются их закономерности, с помощью методов аналитической и математической логики.

Редукционное моделирование используют для того, чтобы получить информацию о законах и закономерностях взаимодействия в системе различных элементов с целью сохранить целое структурное образование.

При таком методе исследования сами элементы заменяются описанием их внешних свойств. Использование метода редукционного моделирования позволяет решить задачи по определению свойств элементов, свойств их взаимодействия и свойств самой структуры системы, в соответствии принципам целого образования. Такой метод используют для поиска методов декомпозиции элементов и изменения структуры, придавая системе в целом новые качества. Этот метод отвечает целям синтеза свойств системы на основе исследования внутреннего потенциала к изменению. Практическим результатом использования метода синтеза в редукционном моделировании становится математический алгоритм описания процессов взаимодействия элементов в целом образовании .

Основные методы системного анализа представляют совокупность количественных и качественных методов, которые можно представить в виде табл. 4.2. По классификации В. Н. Волковой и А. А. Денисова, все методы можно разделить на два основных вида: методы формального представления систем (МФПС) и методы и методы активизации интуиции специалистов (МАИС).

Таблица 4.2

Методы системного анализа

Рассмотрим содержание основных методов формального представления систем , которые используют математические средства.

Аналитические методы, включающие методы классической математики: интегрального и дифференциального исчисления, поиска экстремумов функций, вариационного исчисления; математического программирования; методы теории игр, теории алгоритмов, теории рисков и т.п. Эти методы позволяют описать ряд свойств многомерной и многосвязной системы, отображаемой в виде одной-единственной точки, совершающей движение в n -мерном пространстве. Это отображение осуществляется с помощью функции f (s ) или посредством оператора (функционала) F (S ). Также возможно отобразить точками две системы или более или их части и рассматривать взаимодействие этих точек. Каждая из этих точек совершает движение и имеет свое поведение в n -мерном пространстве. Это поведение точек в пространстве и их взаимодействие описываются аналитическими закономерностями и могут быть представлены в виде величин, функций, уравнений или системы уравнений .

Применение аналитических методов обусловлено лишь тогда, когда все системные свойства можно представить в форме детерминированных параметров или зависимостей между ними. Получить такие параметры в случае с многокомпонентными, многокритериальными системами не всегда представляется возможным. Для этого требуется предварительно установить степени адекватности описания подобной системы с помощью аналитических методов. Это, в свою очередь, требует применения промежуточных, абстрактных моделей, которые можно исследовать аналитическими методами, или же разработку совершенно новых системных методов анализа.

Статистические методы являются основой следующих теорий: вероятностей, математической статистики, исследования операций, статистического имитационного моделирования, массового обслуживания, включая метод Монте-Карло и др. Статистические методы позволяют отобразить систему с помощью случайных (стохастических) событий, процессов, которые описываются соответствующими вероятностными (статистическими) характеристиками и статистическими закономерностями. Применяются статистические методы для исследования сложных недетерминированных (саморазвивающихся, самоуправляемых) систем.

Теоретико-множественные методы, согласно М. Месаровичу, служат основой создания общей теории систем. С помощью таких методов система может быть описана в универсальных понятиях (множество, элемент множества и т.д.). При описании возможно вводить любые отношения между элементами, руководствуясь математической логикой, которая используется как формальный описательный язык взаимосвязей между элементами разных множеств. Теоретико-множественные методы дают возможность описать сложные системы формальным языком моделирования.

Такие методы целесообразно использовать в случаях, если сложные системы не могут быть описаны методами одной предметной области. Теоретико-множественные методы системного анализа являются основой создания и развития новых языков программирования и создания систем автоматизированного проектирования.

Логические методы являются языком описания систем в понятиях алгебры логики. Наибольшее распространение логические методы получили иод названием булевой алгебры как бинарного представления о состоянии элементных схем компьютера. Логические методы позволяют описывать систему в виде более упрощенных структур на основе законов математической логики. На базе таких методов развиваются новые теории формального описания систем в теориях логического анализа и автоматов. Все эти методы расширяют возможность применения системного анализа и синтеза в прикладной информатике. Эти методы используются для создания моделей сложных систем, адекватных законам математической логики для построения устойчивых структур.

Лингвистические методы. С их помощью создаются особые языки, описывающие системы в виде понятий тезауруса. Тезаурус представляет собой множество смысловыражающих единиц некоторого языка с заданной на нем системой семантических отношений. Такие методы нашли свое применение в прикладной информатике.

Семиотические методы базируются на понятиях: символ (знак), знаковая система, знаковая ситуация, т.е. используемых для символического описания содержания в информационных системах.

Лингвистические и семиотические методы стали широко применяться в том случае, когда для первого этапа исследования невозможно формализовать принятие решений в плохо формализуемых ситуациях и нельзя использовать аналитические и статистические методы. Эти методы являются основой развития языков программирования, моделирования, автоматизации проектирования систем разной сложности .

Графические методы. Используются для отображения объектов в виде образа системы, а также позволяют отобразить в обобщенном виде системные структуры и связи. Графические методы бывают объемными и линейно-плоскостными. В основном используются в виде графика Ганта, гистограмм, диаграмм, схем и рисунков. Такие методы и получаемое с их помощью представление дают возможность наглядно отобразить ситуацию или процесс принятия решений в изменяющихся условиях.

Алексеева М. Б. Системный подход и системный анализ в экономике.
  • Алексеева М. Б., Балан С. Н. Основы теории систем и системного анализа.
  • 3.2.1. Характеристика системного анализа как научной дисциплины

    Проблема возрастающей трудности управления экономическими процессами, характерная для всех развитых стран, породила целый ряд научных дисциплин. Их цель - создание концепций, позволяющих объяснить сложные экономические явления; выработать конкретные методы и формы управления экономическими процессами. Для всего этого комплекса дисциплин характерно широкое использование метода моделирования, применение математического аппарата, заимствование понятий и методов точных и технических наук.

    Одна из таких научно-прикладных дисциплин– системный анализ, основанный на системном подходе к рассмотрению изучаемых экономических объектов и явлений. Системный анализ – это научный, всесторонний подход к принятию решений. Вся проблема изучается в целом, определяются цели развития объекта управления и различные пути их реализации в свете возможных последствий. При этом возникает необходимость согласования работы различных частей объекта управления, отдельных исполнителей, с тем, чтобы направить их на достижение обшей цели.

    Системный анализ - это совокупность определенных научных методов и практических приемов решения разнообразных проблем, возникающих во всех сферах целенаправленной деятельности общества, на основе системного подхода и представления объекта исследования в виде системы. Характерным для системного анализа является то, что поиск лучшего решения проблемы начинается с определения и упорядочения целей деятельности системы, при функционировании которой возникла данная проблема. При этом устанавливается соответствие между этими целями, возможными путями решения возникшей проблемы и потребными для этого ресурсами.

    Системный анализ – это методология общей теории систем, заключающаяся в исследовании любых объектов посредством представления их в качестве систем, проведения их структуризации и последующего анализа. Общая теория систем – научная дисциплина, разрабатывающая методологические принципы исследования систем.

    Системный анализ характеризуется упорядоченным, логически обоснованным подходом к исследованию проблем и использованию существующих методов их решения, которые могут быть разработаны в рамках других наук.

    Целью системного анализа является выявление проблемы, ее причин, предсказание ее развития, выработка и обоснование рекомендаций по решению проблемы.

    Объект системного анализа в теоретическом аспекте - это процесс подготовки и принятия решений; в прикладном аспекте - различные конкретные проблемы, возникающие при создании и функционировании систем.

    Предмет системного анализа – полная и всесторонняя проверка различных вариантов действий с точки зрения количественного и качественного сопоставления затраченных ресурсов с получаемым эффектом.

    В прикладном плане системный анализ вырабатывает рекомендации по созданию принципиально новых или усовершенствованных систем. Рекомендации по улучшению функционирования существующих систем касаются самых различных проблем, в частности ликвидации нежелательных ситуаций (например, ухудшение финансово-экономического положения предприятия), вызванных изменением как внешних по отношению к изучаемой системе факторов, так и внутренних.

    Системный анализ имеет двойственную природу: с одной стороны, это теоретическое и прикладное научное направление, использующее в практических целях достижения многих других наук, как точных (математика), так и гуманитарных (экономика, социология), а с другой стороны, это искусство. В нем сочетаются объективные и субъективные аспекты, причем последние присущи как самому процессу системного анализа, так и процессу принятия решения на основе его данных.

    Системному анализу присущи определенные принципы, логические элементы, определенная этапность и методы проведения.

    Применение системного анализа в управленческой деятельности позволяет:

    · определить и упорядочить элементы, цели, параметры, задачи, ресурсы и структуру организационных систем;

    · выявить внутренние свойства организационных систем, определяющие их поведение;

    · выделить и классифицировать связи между элементами ЛС;

    · выявить нерешенные проблемы, узкие места, факторы неопределенности, влияющие на функционирование, возможные решения;

    · формализовать слабоструктурированные проблемы, раскрыть их содержание и возможные последствия;

    · выделить перечень и указать целесообразную последовательность выполнения задач функционирования организационных систем и отдельных ее элементов;

    · разработать модели, характеризующие решаемую проблему со всех основных сторон и позволяющие «проигрывать» возможные варианты действий и т.п.

    3.2.2. Основные понятия системного анализа

    Система – множество элементов, находящихся в отношениях и связях друг с другом, образующих определенную целостность, единство. Элемент системы некоторый объект (материальный, энергетический, информационный), обладающий рядом важных свойств и реализующий в системе определенный закон функционирования , внутренняя структура которого не рассматривается.

    Подсистема – часть системы, выделенная по определенному признаку, обладающая некоторой самостоятельностью и допускающая разложение на элементы в рамках данного рассмотрения. Связь – вид отношений между элементами, который проявляется как некоторый обмен, взаимодействие. Связи могут быть структурные, функциональные, пространственно-временные, каузальные (причинно-следственные), информационные.

    На рис.3.1 представлен общий вид системы.

    Рис.3.1. Система в общем виде

    Первая часть любой системы – ее вход , который состоит из элементов, классифицируемых по их роли в процессах, протекающих в системе. Входной сигнал может быть разделен на три подмножества:

    · неуправляемых входных сигналов , преобразуемых рассматриваемой системой;

    · воздействий внешней среды , представляющих шум, помехи;

    · управляющих сигналов (событий) , появление которых приводит к переводу элемента из одного состояния в другое.

    Первый элемент входа - тот, над которым осуществляется некоторый процесс, или операция. Этот вход есть или будет «нагрузкой» системы (сырье, материалы, энергия, информация и др.).

    Вторым элементом входа системы является внешняя (окружающая) среда, под которой понимается совокупность факторов и явлений, воздействующих на процессы системы и не поддающиеся прямому управлению со стороны ее руководителей. Не контролируемые системами факторы внешней среды обычно можно разбить на две категории: случайные, характеризуемые законами распределения, неизвестными законами или действующие без всяких законов (например, природные условия); факторы, находящиеся в распоряжении системы, являющейся внешней и активно действующей по отношению к рассматриваемой системе (например, законы, нормативно-правовые документы, целевые установки). Цели внешней системы могут быть известны, известны неточно, вовсе неизвестны.

    Третий элемент входа обеспечивает размещение и перемещение компонентов системы, например различных инструкции, положений, приказов, то есть задает законы ее организации и функционирования, цели, ограничительные условия и др.

    Вторая часть системы - это операции, процессы или каналы , через которые проходят элементы входа. Система должна быть устроена таким образом, чтобы необходимые процессы (производственные, подготовки кадров, материально-технического снабжения и др.) воздействовали по определенному закону на каждый вход, в соответствующее время для достижения желаемого выхода.

    Третья часть системы - выход , являющийся продуктом или результатом ее деятельности. Система на своем выходе должна удовлетворять ряду критериев, важнейшие из которых - стабильность и надежность. По выходу судят о степени достижения целей, поставленных перед системой. Выходной сигнал представляется совокупностью характеристик системы .

    Характеристика – то, что отражает некоторое свойство элемента системы, задается как <имя, область допустимых значений>. Некоторые авторы термином параметр называют только количественные характеристики, другие отождествляют понятия параметра и характеристики.

    Законом функционирования , описывающим процесс функционирования элемента системы во времени, называется зависимость .

    Оператор преобразует независимые переменные в зависимые и отражает поведение элемента (системы) во времени - процесс изменения состояния элемента (системы), оцениваемый по степени достижения цели его функционирования. Понятие поведения принято относить только к целенаправленным системам и оценивать по показателям.

    Цель ситуация или область ситуаций, которая должна быть достигнута при функционировании системы за определенный промежуток времени. Цель может задаваться требованиями к показателям результативности, ресурсоемкости, оперативности функционирования системы либо к траектории достижения заданного результата. Как правило, цель для системы определяется старшей системой, а именно той, в которой рассматриваемая система является элементом.

    Качество – совокупность существенных свойств объекта, обусловливающих его пригодность для использования по назначению.

    Показатель – характеристика, отражающая качество системы или целевую направленность процесса. Состояние системы – множество значений характеристик системы в данный момент времени. Процесс – совокупность состояний системы, упорядоченных по изменению какого-либо параметра. Эффективность процесса – степень его приспособленности к достижению цели. Критерий эффективности – обобщенный показатель и правило выбора лучшей системы (лучшего решения), например, . Структура – совокупность образующих систему элементов и связей между ними. Ситуация – совокупность состояний системы и среды в один и тот же момент времени. Проблема – несоответствие между существующим и целевым состоянием системы при данном состоянии среды в рассматриваемый момент времени.

    Открытые системы – это системы, которые обмениваются материально-информационными ресурсами или энергией с окружающей средой регулярным и понятным образом.

    Закрытые системы действуют с относительно небольшим обменом энергией или материалами с окружающей средой, например химическая реакция, протекающая в герметически закрытом сосуде.

    Системы можно классифицировать на равновесные , слабо равновесные и сильно неравновесные. Для социально-экономических систем состояние равновесия может наблюдаться на относительно коротком промежутке времени. Для слабо равновесных систем небольшие изменения внешней среды дают возможность системе в новых условиях достичь состояния нового равновесия. Сильно неравновесные системы, которые весьма чувствительны к внешним воздействиям, под влиянием внешних сигналов, даже небольших по величине, могут перестраиваться непредсказуемым образом.

    По типу составных частей, входящих в систему, последние можно классифицировать на машинные (автомобиль, станок), типа «человек-машина » (самолет-пилот) и типа «человек-человек » (коллектив организации).

    Одна из возможных классификаций систем приведена в табл.3.1.

    Таблица 3.1

    Классификация систем

    Признак классификации

    Вид систем

    Сложность

    Простая, сложная, большая

    Изменение во времени

    Статическая, динамическая

    Взаимосвязь с окружающей средой

    Закрытая, открытая

    Предвидение развития

    Детерминированная, стохастическая

    Реакция на изменение окружающей среды

    Адаптивная, неадаптивная

    Устойчивость к возмущающим воздействиям

    Равновесная, слабо равновесная, сильно неравновесная

    По типу составных частей

    Техническая, социо-техническая, социальная

    Следует различать сложные и большие системы. Сложная система – система с разветвленной структурой и значительным количеством взаимосвязанных и взаимодействующих элементов (подсистем), имеющих разные по своему типу связи, способная сохранять частичную работоспособность при отказе отдельных элементов (свойство робастности ). Большая система – сложная система, имеющая ряд дополнительных признаков: наличие подсистем, имеющих собственное целевое назначение, подчиненное общему целевому назначению всей системы; большое число разнообразных связей (материальных, информационных, энергетических и т.п.); внешние связи с другими системами; наличие в системе элементов самоорганизации.

    Важнейшими характерными чертами больших систем являются:

    1) целенаправленность и управляемость системы, наличие у всей системы общей цели и назначения, задаваемых и корректируемых в системах более высоких уровней;

    2) сложная иерархическая структура организации системы, предусматривающая сочетание централизованного управления с автономностью частей;

    3) большой размер системы, то есть большое число частей и элементов, входов и выходов, разнообразие выполняемых функций и т.д.;

    4) целостность и сложность поведения. Сложные, переплетающиеся взаимоотношения между переменными, включая петли обратной связи, приводят к тому, что изменение одной влечет изменение многих других переменных.

    К большим системам относятся крупные производственно-экономические системы (например, холдинги), города, строительные и научно-исследовательские комплексы.

    Справиться с задачами анализа больших сложных систем можно лишь тогда, когда в нашем распоряжении будет надлежащим образом организованная система исследования, элементы которой подчинены общей цели. Таково основное содержание закона необходимого разнообразия Эшби , из которого вытекает важная практическая рекомендация. Чтобы всесторонне изучить экономическую систему и уметь управлять ею, необходимо создать систему исследования, сравнимую по своей сложности с экономической; невозможно эффективно управлять большой системой с помощью простой системы управления, она требует сложного управляющего механизма. По мере роста сложности решаемых задач должна повышаться возможность системы управления решать эти задачи. Большие организации требуют сложных, многосторонних планов.

    К числу понятий, на которых основаны важные принципы управления системами, относится понятие обратной связи (рис.3.2).

    Рис.3.2. Обратная связь

    Именно оно способствовало установлению принципиальных аналогий между организацией управления в таких качественно различных системах, как машины, живые организмы и коллективы людей. С помощью обратной связи сигнал (информация) с выхода системы (объекта управления) передается в орган управления. Здесь этот сигнал, содержащий информацию о работе, выполненной объектом управления, сравнивается с сигналом, задающим содержание и объем работы (например, план). В случае возникновения рассогласования между фактическим и плановым состоянием работы принимаются меры по его устранению.

    Особенностью социально-экономических систем является то обстоятельство, что не всегда удается четко выразить обратные связи, которые в них, как правило, длинные, проходят через целый ряд промежуточных звеньев, и четкий их просмотр затруднен. Сами управляемые величины нередко не поддаются ясному определению, и трудно установить множество ограничений, накладываемых на параметры управляемых величин. Не всегда известны также действительные причины выхода управляемых переменных за установленные пределы.

    В изменяющейся среде или под воздействием различных «возмущений», которые достигают порога устойчивости, система может прекратить существование, превращаться в другую систему или распадаться на составные элементы. Например, банкротство предприятий.

    Способность системы оставаться устойчивой через изменения своей структуры и поведения называется ультрастабильностью . Так, многие современные, прежде всего крупные, компании обеспечивают высокий уровень своей стабильности за счет высокой приспособляемости к внешним и внутренним условиям своего функционирования. Такие компании своевременно прекращают одни направления своей деятельности и начинают другие, вовремя выходят на новые рынки и покидают бесперспективные.

    Свойство – сторона объекта, обуславливающая его отличие от других объектов или сходство с ними и проявляющаяся при взаимодействии с другими объектами. При взаимодействии с внутренними элементами или с внешними объектами выделяют соответственно внутренние и внешние свойства. Одна из основных целей системного анализа – выявление внутренних свойств системы, определяющих ее поведение и являющихся причинами внешних свойств. По структуре свойства делят на простые и сложные (интегральные). Внешние простые свойства доступны непосредственному наблюдению, внутренние свойства конструируются в нашем сознании логически и не доступны наблюдению.

    Существуют следующие четыре свойства, которыми должен обладать объект, чтобы его можно было считать системой.

    1. Целостность и членимость . Системой является целостная совокупность элементов, взаимодействующих друг с другом, но в целях анализа система может быть условно разделена на отдельные элементы.

    2. Связи – это то, что соединяет объекты и свойства в системном процессе в целое. Между элементами системы существуют связи, которые определяют интегративные качества системы. Связи между элементами системы должны быть более мощными, чем связи отдельных элементов с внешней средой.

    3. Организация – это внутренняя упорядоченность, согласованность взаимодействия элементов системы, определенная структура связей между элементами системы.

    4. Интегративные качества (эмерджентность, системный эффект, синергетический эффект) – качества, присущие системе в целом, но не свойственные ни одному из ее элементов в отдельности.

    3.2.3. Принципы системного анализа

    Системный анализ основывается на множестве принципов , т.е. положениях общего характера, обобщающих опыт работы человека со сложными системами.

    К наиболее важным относятся следующие принципы.

    Принцип конечной цели заключается в абсолютном приоритете глобальной цели и имеет следующие правила:

    1) для проведения системного анализа необходимо в первую очередь сформулировать основную цель исследования;

    2) анализ следует вести на базе уяснения основной цели исследуемой системы, что позволит определить ее основные свойства, показатели качества и критерии оценки;

    3) при синтезе систем любую попытку изменения или совершенствования существующей системы надо оценивать относительно того, помогает или мешает она достижению конечной цели;

    4) цель функционирования искусственной системы задается, как правило, системой, в которой исследуемая система является составной частью.

    Принцип измерения . О качестве функционирования какой-либо системы можно судить только применительно к системе более высокого порядка. Другими словами, для определения эффективности функционирования системы надо представить ее как часть более общей и проводить оценку внешних свойств исследуемой системы относительно целей и задач суперсистемы.

    Принцип единства . Это совместное рассмотрение системы как целого и как совокупности частей (элементов). Принцип ориентирован на «взгляд внутрь» системы, на расчленение ее с сохранением целостных представлений о системе.

    Принцип связности . Рассмотрение любой части совместно с ее окружением подразумевает проведение процедуры выявления связей между элементами системы и выявление связей с внешней средой (учет внешней среды). В соответствии с этим принципом систему в первую очередь следует рассматривать как часть (элемент, подсистему) другой системы, называемой суперсистемой или старшей системой.

    Принцип иерархии . Полезно введение иерархии частей и их ранжирование, что упрощает разработку системы и устанавливает порядок рассмотрения частей.

    Принцип функциональности утверждает, что любая структура тесно связана с функцией системы и ее частей. В случае придания системе новых функций полезно пересматривать ее структуру, а не пытаться втиснуть новую функцию в старую схему. Поскольку выполняемые функции составляют процессы, то целесообразно рассматривать отдельно процессы, функции, структуры. В свою очередь, процессы сводятся к анализу потоков различных видов: материальный поток; поток энергии; поток информации; смена состояний. С этой точки зрения структура есть множество ограничений на потоки в пространстве и во времени.

    Принцип развития . Это учет изменяемости системы, ее способности к развитию, адаптации, расширению, замене частей, накапливанию информации. В основу синтезируемой системы требуется закладывать возможность развития, наращивания, усовершенствования. Обычно расширение функций предусматривается за счет обеспечения возможности включения новых модулей, совместимых с уже имеющимися. С другой стороны, при анализе принцип развития ориентирует на необходимость учета предыстории развития системы и тенденций, имеющихся в настоящее время, для вскрытия закономерностей ее функционирования.

    3.2.4. Структура системного анализа

    На рис.3.3 представлен общий циклический подход к решению проблем. В процессе функционирования реальной системы выявляется проблема практики как несоответствие существующего положения дел требуемому. Для решения проблемы проводится системное исследование (декомпозиция, анализ и синтез) системы, снимающее проблему. В ходе синтеза осуществляется оценка анализируемой и синтезируемой систем. Реализация синтезированной системы в виде предлагаемой физической системы позволяет провести оценку степени снятия проблемы практики, и принять решение на функционирование модернизированной (новой) реальной системы.

    Основными задачами системного анализа являются (табл.3.2):

    · задача декомпозиции означает представление системы в виде подсистем, состоящих из более мелких элементов;

    · задача анализа – нахождение различного рода свойств системы, ее элементов и окружающей среды с целью определения закономерностей поведения системы;

    · задача синтеза – на основе полученных знаний о системе, создать модель системы, определить ее структуру, параметры, обеспечивающие эффективное функционирование системы, решение задач и достижение поставленных целей.

    Рис.3.3. Общий подход к решению проблем с позиций системного анализа

    Таблица 3.2

    Основные задачи и функции системного анализа

    Структура системного анализа

    Декомпозиция

    Анализ

    Синтез

    Определение и декомпозиция общей цели, основной функции

    Функционально-структурный анализ

    Разработка модели системы

    Выделение системы из среды

    Морфологический анализ (анализ взаимосвязи компонентов)

    Структурный синтез

    Описание воздействующих факторов

    Генетический анализ (анализ предыстории, тенденций, прогнозирование)

    Параметрический синтез

    Описание тенденций развития, неопределенностей

    Анализ аналогов

    Оценивание системы

    Описание как «черного ящика»

    Анализ эффективности

    Функциональная, компонентная и структурная декомпозиция

    Формирование требований к создаваемой системе

    На этапе декомпозиции , обеспечивающем общее представление системы, осуществляются:

    1. Определение и декомпозиция общей цели исследования и основной функции системы как ограничение траектории в пространстве состояний системы или в области допустимых ситуаций. Наиболее часто декомпозиция проводится путем построения дерева целей и дерева функций.

    2. Выделение системы из среды (разделение на систему/«несистему») по критерию участия каждого рассматриваемого элемента в процессе, приводящем к результату на основе рассмотрения системы как составной части надсистемы.

    3. Описание воздействующих факторов.

    4. Описание тенденций развития, неопределенностей разного рода.

    5. Описание системы как «черного ящика».

    6. Функциональная (по функциям), компонентная (по виду элементов) и структурная (по виду отношений между элементами) декомпозиции системы.

    Глубина декомпозиции ограничивается. Декомпозиция должна прекращаться, если необходимо изменить уровень абстракции – представить элемент как подсистему. Если при декомпозиции выясняется, что модель начинает описывать внутренний алгоритм функционирования элемента вместо закона его функционирования в виде «черного ящика», то в этом случае произошло изменение уровня абстракции. Это означает выход за пределы цели исследования системы и, следовательно, вызывает прекращение декомпозиции.

    В автоматизированных методиках типичной является декомпозиция модели на глубину 5-6 уровней. На такую глубину декомпозируется обычно одна из подсистем. Функции, которые требуют такого уровня детализации, часто очень важны, и их детальное описание дает ключ к секретам работы всей системы.

    В общей теории систем доказано, что большинство систем могут быть декомпозированы на базовые представления подсистем. К ним относят: последовательное (каскадное) соединение элементов, параллельное соединение элементов, соединение с помощью обратной связи.

    Проблема проведения декомпозиции состоит в том, что в сложных системах отсутствует однозначное соответствие между законом функционирования подсистем и алгоритмом, его реализующим. Поэтому осуществляется формирование нескольких ва­риантов (или одного варианта, если система отображена в виде иерархической структуры) декомпозиции системы.

    Рассмотрим некоторые наиболее часто применяемые стратегии декомпозиции.

    Функциональная декомпозиция . Декомпозиция базируется на анализе функций системы. При этом ставится вопрос что делает система, независимо от того, как она работает. Основанием разбиения на функциональные подсистемы служит общность функций, выполняемых группами элементов.

    Декомпозиция по жизненному циклу . Признак выделения подсистем – изменение закона функционирования подсистем на разных этапах цикла существования системы «от рождения до гибели». Рекомендуется применять эту стратегию, когда целью системы является оптимизация процессов и когда можно определить последовательные стадии преобразования входов в выходы.

    Декомпозиция по физическому процессу . Признак выделения подсистем – шаги выполнения алгоритма функционирования подсистемы, стадии смены состояний. Хотя эта стратегия полезна при описании существующих процессов, результатом ее часто может стать слишком последовательное описание системы, которое не будет в полной мере учитывать ограничения, диктуемые функциями друг другу. При этом может оказаться скрытой последовательность управления. Применять эту стратегию следует, только если целью модели является описание физического процесса как такового.

    Декомпозиция по подсистемам (структурная декомпозиция). Признак выделения подсистем – сильная связь между элементами по одному из типов отношений (связей), существующих в системе (информационных, логических, иерархических, энергетических и т.п.). Силу связи, например, по информации можно оценить коэффициентом информационной взаимосвязи подсистем к = N / N o , где N – количество взаимоиспользуемых информационных массивов в подсистемах, N 0 - общее количество информационных массивов. Для описания всей системы должна быть построена составная модель, объединяющая все отдельные модели. Рекомендуется использовать разложение на подсистемы, только когда такое разделение на основные части системы не изменяется. Нестабильность границ подсистем быстро обесценит как отдельные модели, так и их объединение.

    На этапе анализа , обеспечивающем формирование детального представления системы, осуществляются:

    1. Функционально-структурный анализ существующей системы, позволяющий сформулировать требования к создаваемой системе. Он включает уточнение состава и законов функционирования элементов, алгоритмов функционирования и взаимовлияний подсистем, разделение управляемых и неуправляемых характеристик, задание пространства состояний Z, задание параметрического пространства Т, в котором задано поведение системы, анализ целостности системы, формулирование требований к создаваемой системе.

    2. Морфологический анализ – анализ взаимосвязи компонентов.

    3. Генетический анализ – анализ предыстории, причин развития ситуации, имеющихся тенденций, построение прогнозов.

    4. Анализ аналогов.

    5. Анализ эффективности (по результативности, ресурсоемкости, оперативности). Он включает выбор шкалы измерения, формирование показателей эффективности, обоснование и формирование критериев эффективности, непосредственно оценивание и анализ полученных оценок.

    6. Формирование требований к создаваемой системе, включая выбор критериев оценки и ограничений.

    Этап синтеза системы, решающей проблему, представлен в виде упрощенной функциональной диаграммы на рис.3.4.

    Рис.3.4. Упрощенная функциональная диаграмма этапа синтеза системы, решающей проблему

    На этом этапе осуществляются:

    1. Разработка модели требуемой системы (выбор математического аппарата, моделирование, оценка модели по критериям адекватности, простоты, соответствия между точностью и сложностью, баланса погрешностей, многовариантности реализаций, блочности построения).

    2. Синтез альтернативных структур системы, снимающей проблему.

    3. Синтез параметров системы, снимающей проблему.

    4. Оценивание вариантов синтезированной системы (обоснование схемы оценивания, реализация модели, проведение эксперимента по оценке, обработка результатов оценивания, анализ результатов, выбор наилучшего варианта).

    Оценка степени снятия проблемы проводится при завершении системного анализа.

    Наиболее сложными в исполнении являются этапы декомпозиции и анализа. Это связано с высокой степенью неопределенности, которую требуется преодолеть в ходе исследования. Рассмотрим процесс формирования общего и детального представления системы, включающий девять основных стадий.

    Формирование общего представления системы

    Стадия 1 . Выявление главных функций (свойств, целей, предназначения) системы. Формирование (выбор) основных предметных понятий, используемых в системе. На этой стадии речь идет об уяснении основных выходов в системе. Именно с этого лучше всего начинать ее исследование. Должен быть определен тип выхода: материальный, энергетический, информационный, они должны быть отнесены к каким-либо физическим или другим понятиям (выход производства – продукция (какая?), выход системы управления – командная информация (для чего? в каком виде?), выход автоматизированной информационной системы – сведения (о чем?) и т.д.).

    Стадия 2 . Выявление основных функций и частей (модулей) в системе. Понимание единства этих частей в рамках системы. На этой стадии происходит первое знакомство с внутренним содержанием системы, выявляется, из каких крупных частей она состоит и какую роль каждая часть играет в системе. Это стадия получения первичных сведений о структуре и характере основных связей. Такие сведения следует представлять и изучать при помощи структурных или объектно-ориентированных методов анализа систем, где, например, выясняется наличие преимущественно последовательного или параллельного характера соединения частей, взаимной или преимущественно односторонней направленности воздействий между частями и т.п. Уже на этой стадии следует обратить внимание на так называемые системообразующие факторы, т.е. на те связи, взаимообусловленности, которые и делают систему системой.

    Стадия 3. Выявление основных процессов в системе, их роли, условий осуществления; выявление стадийности, скачков, смен состояний в функционировании; в системах с управлением – выделение основных управляющих факторов. Здесь исследуется динамика важнейших изменений в системе, ход событий, вводятся параметры состояния, рассматриваются факторы, влияющие на эти параметры, обеспечивающие течение процессов, а также условия начала и конца процессов. Определяется, управляемы ли процессы и способствуют ли они осуществлению системой своих главных функций. Для управляемых систем уясняются основные управляющие воздействия, их тип, источник и степень влияния на систему.

    Стадия 4 . Выявление основных элементов «несистемы», с которыми связана изучаемая система. Выявление характера этих связей. На этой стадии решается ряд отдельных проблем. Исследуются основные внешние воздействия на систему (входы). Определяются их тип (вещественные, энергетические, информационные), степень влияния на систему, основные характеристики. Фиксируются границы того, что считается системой, определяются элементы «несистемы», на которые направлены основные выходные воздействия. Здесь же полезно проследить эволюцию системы, путь ее формирования. Нередко именно это ведет к пониманию структуры и особенностей функционирования системы. В целом данная стадия позволяет лучше уяснить главные функции системы, ее зависимость и уязвимость или относительную независимость во внешней среде.

    Стадия 5 . Выявление неопределенностей и случайностей в ситуации их определяющего влияния на систему (для стохастических систем).

    Стадия 6. Выявление разветвленной структуры, иерархии, формирование представлений о системе как о совокупности модулей, связанных входами-выходами.

    Стадией 6 заканчивается формирование общих представлений о системе. Как правило, этого достаточно, если речь идет об объекте, с которым мы непосредственно работать не будем. Если же речь идет о системе, которой надо заниматься для ее глубокого изучения, улучшения, управления, то нам придется пойти дальше по спиралеобразному пути углубленного исследования системы.

    Формирование детального представления системы

    Стадия 7 . Выявление всех элементов и связей, важных для целей рассмотрения. Их отнесение к структуре иерархии в системе. Ранжирование элементов и связей по их значимости.

    Стадии 6 и 7 тесно связаны друг с другом, поэтому их обсуждение полезно провести вместе. Стадия 6 – это предел познания «внутрь» достаточно сложной системы для лица, оперирующего ею целиком. Более углубленные знания о системе (стадия 7) будет иметь уже только специалист, отвечающий за ее отдельные части. Для не слишком сложного объекта уровень стадии 7 – знание системы целиком – достижим и для одного человека. Таким образом, хотя суть стадий 6 и 7 одна и та же, но в первой из них мы ограничиваемся тем разумным объемом сведений, который доступен одному исследователю.

    При углубленной детализации важно выделять именно существенные для рассмотрения элементы (модули) и связи, отбрасывая все то, что не представляет интереса для целей исследования. Познание системы предполагает не всегда только отделение су­щественного от несущественного, но также уделение дополнительного внимания более существенному. Детализация должна затронуть и уже рассмотренную в стадии 4 связь системы с «несистемой». На стадии 7 совокупность внешних связей считается проясненной настолько, что можно говорить о доскональном знании системы.

    Стадии 6 и 7 подводят итог общему, цельному изучению системы. Дальнейшие стадии уже рассматривают только ее отдельные стороны. Поэтому важно еще раз обратить внимание на системообразующие факторы, на роль каждого элемента и каждой связи, на понимание, почему они именно таковы или должны быть именно таковыми в аспекте единства системы.

    Стадия 8 . Учет изменений и неопределенностей в системе. Здесь исследуются медленное, обычно нежелательное изменение свойств системы, которое принято называть «старением», а также возможность замены отдельных частей (модулей) на новые, позволяющие не только противостоять старению, но и повысить качество системы по сравнению с первоначальным состоянием. Такое совершенствование искусственной системы принято называть развитием. К нему также относят улучшение характеристик модулей, подключение новых модулей, накопление информации для лучшего ее использования, а иногда и перестройку структуры, иерархии связей.

    Основные неопределенности в стохастической системе считаются исследованными на стадии 5. Однако недетерминированность всегда присутствует и в системе, не предназначенной работать в условиях случайного характера входов и связей. Добавим, что учет неопределенностей в этом случае обычно превращается в исследование чувствительности важнейших свойств (выходов) системы. Под чувствительностью понимают степень влияния изменения входов на изменение выходов.

    Стадия 9. Исследование функций и процессов в системе в целях управления ими. Введение управления и процедур принятия решения. Управляющие воздействия как системы управления. Для целенаправленных и других систем с управлением данная стадия имеет большое значение. Основные управляющие факторы были уяснены при рассмотрении стадии 3, но там это носило характер общей информации о системе. Для эффективного введения управлений или изучения их воздействий на функции системы и процессы в ней необходимо глубокое знание системы. Именно поэтому мы говорим об анализе управлений только сейчас, после всестороннего рассмотрения системы. Напомним, что управление может быть чрезвычайно разнообразным по содержанию – от команд специализированной управляющей ЭВМ до министерских приказов.

    Однако возможность единообразного рассмотрения всех целенаправленных вмешательств в поведение системы позволяет говорить уже не об отдельных управленческих актах, а о системе управления, которая тесно переплетается с основной системой, но четко выделяется в функциональном отношении.

    На данной стадии выясняется, где, когда и как (в каких точках системы, в какие моменты, в каких процессах, скачках, выборах из совокупности, логических переходах и т.д.) система управления воздействует на основную систему, насколько это эффективно, приемлемо и удобно реализуемо. При введении управлений в системе должны быть исследованы варианты перевода входов и постоянных параметров в управляемые, определе­ны допустимые пределы управления и способы их реализации.

    Стадии 6-9 были посвящены углубленному исследованию системы. Далее идет специфическая стадия моделирования. О создании модели можно говорить только после полного изучения системы.

    Посмотрим, какой смысл в системный анализ вкладывают его авторы, как они объясняют это понятие

    Понятие «системный» используется потому, что исследование такого рода в своей основе строится на использовании категории системы.

    С одной стороны, системой называется та физическая реальность, по отношению к которой необходимо принять решения (любые естественные и искусственные объекты).

    С другой стороны, в процессе системного анализа создается абстрактная и концептуальная система, описываемая с помощью символов или других средств, которая представляет собой определенное структурно-логическое устройство, цель которого - служить инструментом для понимания, описания и возможно более полной оптимизации поведения связей и отношений элементов реальной физической системы. Такого рода абстрактной системой может быть математическая, машинная или словесная модель или система моделей и т.д. В физической и соответствующей ей абстрактной системах должно быть установлено взаимооднозначное соотношение между элементами и их связями. В этом случае оказывается возможным, не прибегая к экспериментам на реальных физических системах, оценить различного рода рабочие гипотезы относительно целесообразности тех или иных действий, пользуясь соответствующей абстрактной системой, и выработать наиболее предпочтительное решение.

    Термин «анализ» используется для характеристики самой процедуры проведения исследования, которая состоит в том, чтобы разбить проблему в целом на ее составляющие части, более доступные для решения, использовать наиболее подходящие специальные методы для решения отдельных подпроблем и, наконец, объединить частные решения так, чтобы было построено общее решение проблемы. Очевидно, что наиболее эффективно анализ может быть произведен лишь на основе системного подхода, который предусматривает не только органическое сочетание аналитического расчленения проблем на части и исследования связей и отношений между этими частями, но также делает особое ударение на рассмотрение целей и задач, общих для всех частей, и в соответствии с этим осуществляется синтез общего решения из частных решений. По сути дела, в системном анализе методы анализа и синтеза взаимно переплетаются, при осуществлении аналитической процедуры постоянно обращается внимание на способы объединения отдельных результатов в единое целое и влияние каждого из элементов на другие элементы системы.

    Сегодня «системный анализ» в целом толкуется столь широко и неопределенно, что практически не может быть реализован в конкретных исследованиях. И видимо, не случайно, что сегодня еще нет возможности подобрать сквозной пример достаточно крупного завершенного системного исследования. Попытаемся разобраться в этом понятии.

    Касаясь различных точек зрения на термин «системный анализ», специалисты выделяют два различных подхода.

    Сторонники первого из них делают ударение на математику, т.е. на описание сложной системы с помощью формальных средств (блочных диаграмм, сетей, математических уравнений). На основе такого рода формального описания часто ставится математическая задача на отыскание оптимального проекта системы или наилучшего режима ее функционирования, т. е. нахождения максимума (или минимума) целевой функции системы (например, максимума прибыли, максимума числа выведенных из строя военных объектов, минимума времени выполнения операций, максимума надежности и т.п.) при заданных ограничениях на значения управляемых переменных.

    Следует особо подчеркнуть, что составление блок-схем, характеризующих взаимосвязь и последовательность выполняемых операций, - это стадия, предшествующая любым расчетам на ЭВМ. Поэтому во многих случаях системным анализом стали называть любую работу такого рода, выполняемую специалистами, непосредственно занятыми обслуживанием ЭВМ.

    Другой подход, который соответствует точке зрения «РЭНД-корпорейшн», во главу угла ставит логику системного анализа. В этом случае подчеркивается неразрывная связь системного анализа с принятием решения, и означающим выбор определенного образа или курса действий среди нескольких возможных альтернатив. Здесь системный анализ рассматривается прежде всего как методология уяснения и упорядочения или так называемой структуризации проблемы, которую предстоит решить с применением или без применения математики и ЭВМ. При этом в понятие «структуризации» вкладывается как пояснение реальных целей самой системы, альтернативных путей достижения этих целей и взаимосвязей между компонентами в процессе реализации каждой альтернативы, так и достижение углубленного понимания внешних условий, в которых возникла проблема, а отсюда ограничений и последствий того или иного курса действий. Логический системный анализ в той или иной степени дополняется математическими, статистическими и логическими методами, однако как сфера его применения, так и методология значительно отличаются от предмета и методологии формально-математических системных исследований.

    Сначала системный анализ базировался главным образом на применении сложных математических приемов. Спустя некоторое время ученые пришли к выводу, что математика неэффективна при анализе широких проблем со множеством неопределенностей, которые характерны для исследования и разработки техники как единого целого. Об этом говорят многие ведущие специалисты-системщики. Поэтому стала вырабатываться концепция такого системного анализа, в котором делается упор преимущественно на разработку новых по своему существу диалектических принципов научного мышления, логического анализа сложных объектов с учетом их взаимосвязей и противоречивых тенденций. При таком подходе на первый план выдвигаются уже не математические методы, а сама логика системного анализа, упорядочение процедуры принятия решений. И видимо, не случайно, что в последнее время под системным походом зачастую понимается некоторая совокупность системных принципов.

    Такому подходу, которого прежде всего будем придерживаться и мы, соответствует следующее наше определение.

    Системный анализ - это взаимосвязанное логико-математическое и комплексное рассмотрение всех вопросов, относящихся не только к замыслу, разработке, производству, эксплуатации и последующей ликвидации современных ТС, но и к методам руководства всеми этими этапами с учетом социальных, политических, стратегических, психологических, правовых, географических, демографических, военных и других аспектов.

    Чем же отличается системный анализ от других методов?

    Основные отличия его от других более или менее формализованных подходов при обосновании управленческих решений сводятся к следующему:

    • рассматриваются все теоретические возможные альтернативные методы и средства достижения целей по жизненному циклу ТС (исследовательские, конструктивные, технологические, эксплуатационные и пр.), правильная комбинация и сочетание этих различных методов и средств;
    • альтернативы ТС оцениваются обязательно с позиции длительной перспективы (особенно для систем, имеющих стратегическое назначение);
    • отсутствуют стандартные решения;
    • четко излагаются различные взгляды при решении одной и той же проблемы;
    • применяются к проблемам, для которых не полностью определены требования стоимости или времени;
    • признается принципиальное значение организационных и субъективных факторов в процессе принятии решений, и в соответствии с этим разрабатываются процедуры широкого использования качественных суждений в анализе и согласовании различных точек зрения;
    • особое внимание уделяется факторам риска и неопределенности, их учету и оценке при выборе наиболее оптимальных решений среди возможных вариантов.

    Повышенное внимание системотехников к факторам риска и неопределенности непосредственно вытекает из распространения системного анализа на перспективные проблемы. Если риск понимается как потенциальная изменчивость объективных характеристик анализируемых ТС, то неопределенность выражает отсутствие субъективных знаний о том, в какой форме проявятся эти явления.

    Тенденция к системному анализу крупных проблем появляется только тогда, когда их масштаб возрастает до такой степени, что решения становятся сложными, трудоемкими и дорогостоящими. При обосновании таких решений, которые становятся предметом системного анализа, все большее значение приобретают факторы, рассчитанные вперед на 10-15-летний период. К факторам такого рода относятся прежде всего огромный рост капиталовложений на осуществление крупных программ, охватывающих длительный период, и все большая зависимость этих программ от результатов научных исследований и технических разработок.

    Другой важной причиной необходимости учета длительной перспективы является стратегический характер самих целей, которые ставятся перед системным анализом и которые предопределяют политику правительства (или организации) на длительный период.

    Важно отметить, что чем более общие и важные проблемы возникают перед руководителями различных уровней, тем больше возрастает значение системного анализа для их решения.

    Где можно и нужно применять системный анализ?

    Его применение определяется типом проблем, которые мы и рассмотрим.

    Все проблемы в зависимости от глубины их познания подразделяются на три класса:

    1. хорошо структурированные или количественно сформулированные проблемы, в которых существенные зависимости выяснены настолько хорошо, что они могут быть выражены в числах и символах, получающих в конце концов численные оценки;
    2. неструктурированные или качественно выраженные проблемы, содержащие лишь описание важнейших ресурсов, признаков и характеристик, количественные зависимости между которыми совершенно неизвестны;
    3. слабо структурированные или смешанные проблемы, которые содержат как качественные, так и количественные элементы, причем качественные малоизвестные и неопределенные стороны проблемы имеют тенденцию доминировать.

    Для решения хорошо структурированных проблем используется методология исследования операций (ИО). Она состоит в применении математических моделей и методов {линейного, нелинейного, динамического программирования, теории массового обслуживания, теории игр и т.д.) для отыскания оптимальной стратегии управления целенаправленными действиями. Основная проблема применения методов исследования операций состоит в том, чтобы правильно подобрать типовую или разработать новую математическую модель, собрать необходимые исходные данные и убедиться путем анализа исходных предпосылок и результатов математического расчета, что эта модель отражает существо решаемой задачи.

    В неструктурированных проблемах традиционным является эвристический метод, который состоит в том, что опытный специалист собирает максимум различных сведений о решаемой проблеме, вживается в нее и на основе интуиции и суждений вносит предложения о целесообразных мероприятиях.

    При таком подходе отсутствует какая-либо упорядоченная логическая процедура отыскания решения, и специалист, выдвигающий определенные предложения, не может сколько-нибудь четко изложить способ, на основе которого он от совокупности разрозненных исходных сведений пришел к окончательным рекомендациям. При решении проблемы такой специалист полагается на имеющийся собственный опыт, на опыт своих коллег, на профессиональную подготовленность, на изучение аналогичных проблем методом ситуаций, но не на четко сформулированную методику.

    К слабо структурированным проблемам, для решения которых предназначен системный анализ, относится большинство наиболее важных экономических, технических, политических и военно-стратегических задач крупного масштаба.

    Типичными проблемами такого рода являются те, которые:

    1. намечены для решения в будущем;
    2. сталкиваются с широким набором альтернатив;
    3. зависят от текущей неполноты технологических достижений;
    4. требуют больших вложений капитала и содержат элементы риска;
    5. внутренне сложны вследствие комбинирования ресурсов, необходимых для их решения;
    6. для которых не полностью определены требования стоимости или времени.

    При осуществлении системного анализа в процесс структуризации проблемы некоторые ее элементы-подзадачи получают количественное выражение, и отношения между всеми элементами становятся все более определенными. Исходя из этого, в отличие от применения методов ИО, при использовании системного анализа совсем не обязательна первоначальная четкая и исчерпывающая постановка проблемы, эта четкость должна достигаться в процессе самого анализа и рассматривается как одна из его главных целей. Задачи методов ИО могут быть поставлены в количественной форме и решены на ЭВМ. В противовес этому стратегические проблемы, состоящие в выработке долгосрочной политики, в области производства, как правило, не могут быть сформулированы как задачи ИО, Проблемы такого рода являются предметом системного анализа. Стратегические задачи не являются легко квалифицируемыми (т.е. выражаемыми количественно) по причине отсутствия однозначного критерия оптимальности для фирмы в целом и требуют при выработке решений привлечения субъективных суждений опытных руководителей и экспертов.

    Подведем некоторые итоги по сути системного анализа.

    1. Системный анализ связан с принятием оптимального решения из многих возможных альтернатив.
    2. Каждая альтернатива оценивается с позиции длительной перспективы.
    3. СА рассматривается как методология углубленного уяснения (понимания) и упорядочения (структуризации) проблемы.
    4. В СА упор направлен на разработку новых принципов научного мышления, учитывающих взаимосвязь целого и противоречивые тенденции. Более конкретно - систематически на всех этапах жизненного цикла любой ТС осуществляется сопоставление альтернатив, по возможности в количественной форме, на основе логической последовательности шагов.
    5. Обостряется интуиция специалистов.
    6. Применяется в первую очередь для решения стратегических проблем.

    Итак, СА - это совокупность методов и средств выработки, принятия и обоснования решений (при исследовании, создании и управлении ТС, в частности).

    В чем заключаются новизна системного анализа, его основные преимущества и недостатки?

    Новизна системного анализа заключается в том, что он рассматривает проблему в целом, с постоянным ударением на ясность анализа, на количественные методы и на выявление неопределенности. Новыми также являются схемы или модели, где связи не могут быть адекватно выражены с помощью математической модели.

    Достоинство системного анализа состоит в том, что он позволяет систематически и эффективно сочетать суждения и интуицию экспертов в соответствующих областях.

    Системный анализ должен рассматриваться не как противопоставление субъективным суждениям, а как структурная основа, которая обеспечивает использование суждений экспертов в разных областях для получения результатов, превосходящих любые индивидуальные суждения. Это его цель, и возможность этого он обеспечивает.

    Но субъективность суждений, неточность знаний, интуитивность оценок и неопределенность сведений о природе и о действиях других людей приводят к тому, что на базе исследования можно добиться не больше, чем оценки некоторого преимущества выбора одной альтернативы по сравнению с другой.

    Ограниченность системного анализа обусловлена:

    • неизбежной неполнотой анализа;
    • приближенностью меры эффективности;
    • отсутствием способов точного предсказания будущего.

    Некоторые факторы социально-политического характера должны играть важную роль при разработке и выборе альтернатив. Однако в настоящее время не существует даже приближенных способов измерить эти факторы, и приходится их учитывать интуитивно.

    Чрезвычайно важно заострить на неизмеримых факторах внимание ответственного руководителя, который принимает решения.

    Недостатки системного анализа заключаются в следующем. Многие факторы, имеющие фундаментальное значение, не поддаются количественной обработке и могут быть упущены из рассмотрения или умышленно оставлены для последующего рассмотрения, а потом забыты. Иногда им может придаваться неправильный вес в самом анализе либо в решении, основанном на таком анализе.

    Другая причина в том, что исследование может внешне выглядеть до такой степени научным и количественно точным, что ему может быть приписана совершенно неоправданная обоснованность, несмотря на то что она включает много субъективных суждений. Другими словами, мы можем быть так очарованы привлекательностью и точностью чисел, что просмотрим упрощения, сделанные для достижения этой точности, упустим анализ качественных факторов и преувеличим важность абстрактных вычислений в процессе решения. Но без анализа мы сталкиваемся с еще большей опасностью упущения улучшений тех или иных соображений и неправильного «взвешивания» отдельных факторов.

    В чем заключается основное значение системного анализа?

    В качестве основного и наиболее ценного результата системного анализа признается не количественное определенное решение проблемы, а увеличение степени ее понимания и возможных путей решения у специалистов и экспертов, участвующих в исследовании проблемы, и, что особенно важно, у ответственных лиц, которым предоставляется набор хорошо проработанных и оцененных альтернатив.

    Полезность новых методов анализа и управления и в первую очередь системного анализа состоит в следующем:

    1. в большем понимании и проникновении в суть проблемы: практические усилия выявить взаимосвязи и количественные ценности помогут обнаружить скрытые точки зрения за теми или иными решениями;
    2. в большей точности: более четкое формулирование целей, задач... снизит, хотя и не устранит, неизбежно неясные стороны многоплановых целей;
    3. в большей сравнимости: анализ (политика) может быть осуществлен таким образом, что планы для одной страны или района могут быть с пользой увязаны и сравнены с планами и политикой в отношении других районов; при этом можно выявить общие элементы;
    4. в большей полезности, эффективности: разработка новых методов должна привести к распределению денежных ресурсов... более упорядоченным образом и должна оказать помощь в проверке ценности интуитивных суждений.

    Значение методов системного анализа проиллюстрируем на одном примере. Но сначала вспомним, что основными задачами системного анализа являются определение всего набора альтернатив решения проблемы и их сравнение с точки зрения затрат и эффективности при достижении определенной цели. Всякая сложная проблема включает множество различных факторов, которые не могут быть охвачены одной дисциплиной. Поэтому целесообразно создавать междисциплинарные группы специалистов, имеющих знания и квалификацию в различных областях. При этом более важным является и то, что проблема выглядит по-разному в глазах экономиста, биолога, инженера и пр. и различные подходы, свойственные им, могут лучше способствовать отысканию решений.

    Возникает необходимость рассматривать проблему с различных точек зрения, чтобы выяснить, какой именно подход или какая комбинация «специальных подходов» является наилучшей. Поясним это на примере: К управляющему большим административным зданием все возрастающим потоком поступали жалобы от работавших в этом здании служащих. В жалобах указывалось, что приходится слишком долго ждать лифта. Управляющий обратился за помощью к фирме, специализирующейся на подъемных системах. Инженеры этой фирмы провели хронометраж, показавший, что жалобы вполне обоснованы. Было установлено, что среднее время ожидания лифта превышает принятые нормы. Эксперты сообщили управляющему, что имеются три возможных способа решения задачи: увеличение числа лифтов, замена существующих лифтов быстроходными и введение специального режима работы лифтов, т.е. перевод каждого лифта на обслуживание только определенных этажей. Управляющий попросил фирму оценить все эти альтернативы и представить ему сметы предполагаемых затрат для реализации каждого из вариантов.

    Через некоторое время фирма выполнила эту просьбу. Оказалось, что для реализации первых двух вариантов требуются затраты, которые, с точки зрения управляющего, не оправдывались доходом, приносимым зданием, а третий вариант, как выяснилось, не обеспечивало достаточного сокращения времени ожидания. Управляющий не был удовлетворен ни одним из этих предложений. Он отложил дальнейшие переговоры с этой фирмой на некоторое время, чтобы обдумать все варианты и принять решение.

    Когда руководитель сталкивается с проблемой, кажущейся ему неразрешимой, он часто считает нужным обсудить ее с некоторыми своими подчиненными. В группу сотрудников, к которым обратился наш управляющий, входил один молодой психолог, работавший в отделе найма персонала, обслуживающего и ремонтировавшего это большое здание. Когда управляющий изложил собравшимся сотрудникам суть проблемы, этот молодой человек очень удивился самой ее постановке. Он сказал, что не может понять, почему служащие, которые, как известно, каждый день бесполезно теряют много рабочего времени, недовольны тем, что им приходится ждать лифта какие-то минуты. Не успел он высказать свое сомнение, как у него мелькнула мысль, что он нашел объяснение. Хотя служащие нередко бесполезно растрачивают свои рабочие часы, они в это время заняты чем-то хотя и непроизводительным, но зато приятным. А вот ожидая лифт, они просто томятся от безделья. При этой догадке лицо молодого психолога засветилось, и он выпалил свое предложение. Управляющий принял его, и спустя несколько дней проблема была решена при самых минимальных затратах. Психолог предложил повесить на каждом этаже у лифта большие зеркала. Эти зеркала, естественно, дали занятие ожидающим лифт женщинам, но перестали скучать и мужчины, которые теперь были поглощены разглядыванием женщин, делая вид, что не обращают на них никакого внимания.

    Не важно, насколько достоверна эта история, но мысль, которую она иллюстрирует, чрезвычайно важна, Психолог рассматривал точно ту же проблему, что и инженеры, но он подошел к ней с других позиций, определяемых полученным образованием и интересами. В данном случае подход психолога оказался наиболее эффективным. Очевидно, что проблема была решена за счет изменения поставленной цели, которая же свелась не к сокращению времени ожидания, а к созданию впечатления, что оно стало меньше.

    Таким образом, мы нуждаемся в упрощении систем, операций, процедур принятия решений и пр. Но этой простоты не так-то легко достичь. Это труднейшая задача. Старое высказывание: «Я пишу вам длинное письмо, так как у меня нет времени сделать его коротким», может быть перефразировано: «Я делаю это сложным, так как не знаю, как это сделать простым».

    Системный анализ решает эту задачу!

    Существуют различные точки зрения на содержание понятия «системный анализ» и область его применения. Изучение различных определений системного анализа позволяет выделить четыре его трактовки.

    Первая трактовка рассматривает системный анализ как один из конкретных методов выбора лучшего решения возникшей проблемы, отождествляя его, например, с анализом по критерию стоимость - эффективность.

    Такая трактовка системного анализа характеризует попытки обобщить наиболее разумные приемы любого анализа (например, военного или экономического), определить общие закономерности его проведения.

    В первой трактовке системный анализ - это, скорее, «анализ систем», так как акцент делается на объекте изучения (системе), а не на системности рассмотрения (учете всех важнейших факторов и взаимосвязей, влияющих на решение проблемы, использование определенной логики поиска лучшего решения и т.д.)

    В ряде работ, освещающих те или иные проблемы системного анализа, слово «анализ» употребляется с такими прилагательными, как количественный, экономический, ресурсный, а термин «системный анализ» применяется значительно реже.

    Согласно второй трактовке системный анализ - это конкретный метод познания (противоположность синтезу).

    Третья трактовка рассматривает системный анализ как любой анализ любых систем (иногда добавляется, что анализ на основе системной методологии) без каких-либо дополнительных ограничений на область его применения и используемые методы.

    Согласно четвертой трактовке системный анализ - это вполне конкретное теоретико-прикладное направление исследований, основанное на системной методологии и характеризующееся определенными принципами, методами и областью применения. Он включает в свой состав как методы анализа, так и методы синтеза.

    Нам представляется правильной четвертая трактовка, наиболее адекватно отражающая направленность системного анализа и совокупность используемых им методов.

    Итак, системный анализ - это совокупность определенных научных методов и практических приемов решения разнообразных проблем, возникающих во всех сферах целенаправленной деятельности общества, на основе системного подхода и представления объекта исследования в виде системы. Характерным для системного анализа является то, что поиск лучшего решения проблемы начинается с определения и упорядочения целей деятельности системы, при функционировании которой возникла данная проблема. При этом устанавливается соответствие между этими целями, возможными путями решения возникшей проблемы и потребными для этого ресурсами.

    Системный анализ характеризуется главным образом упорядоченным, логически обоснованным подходом к исследованию проблем и использованию существующих методов их решения, которые могут быть разработаны в рамках других наук.

    Целью системного анализа является полная и всесторонняя проверка различных вариантов действий с точки зрения количественного и качественного сопоставления затраченных ресурсов с получаемым эффектом.

    Системный анализ, по существу, является средством установления рамок для систематизированного и более эффективного использования знаний, суждений и интуиции специалистов; он обязывает к определенной дисциплине мышления.

    Иными словами, системный анализ - это систематизированные методы оказания лицу, принимающему решение, помощи при выборе курса действий путем изучения всей проблемы в целом, определения конечных целей и различных путей их достижения с учетом возможных последствий. Для получения квалифицированного суждения по проблемам используются соответствующие методы.

    Одна из задач системного анализа заключается в раскрытии содержания проблем, стоящих перед руководителями, принимающими решения, настолько, чтобы им стали очевидны все основные последствия решений и их можно было бы учитывать в своих действиях. Системный анализ помогает ответственному за принятие решения лицу более строго подойти к оценке возможных вариантов действий и выбрать наилучший из них с учетом дополнительных, неформализуемых факторов и моментов, которые могут быть неизвестны специалистам, готовящим решение.

    Кратко охарактеризуем методологию системного анализа, используя определение методологии науки.

    «Методология науки дает характеристику компонентов научного исследования, его объекта, предмета анализа, задачи исследования (или проблемы), совокупности исследовательских средств, необходимых для решения задачи данного типа, а также формирует представление о последовательности движения исследования в процессе решения задач».

    Вначале определим содержание объекта системного анализа, т.е. выясним его специфику и место среди других родственных ему научных направлений.

    Объект системного анализа в теоретическом аспекте - это процесс подготовки и принятия решений; в прикладном аспекте - различные конкретные проблемы, возникающие при создании и функционировании систем.

    В теоретическом аспекте - это, во-первых, общие закономерности проведения исследований, направленные на поиск наилучших решений различных проблем на основе системного подхода (содержание отдельных этапов системного анализа, взаимосвязи, существующие между ними, и др.).

    Во-вторых, конкретные научные методы исследования - определение целей и их ранжирование, дезагрегирование проблем (систем) на их составные элементы, определение взаимосвязей, существующих как между элементами системы, так и между системой и внешней средой и др.

    В-третьих, принципы интегрирования различных методов и приемов исследования (математических и эвристических), разработанных как в рамках системного анализа, так и в рамках других научных направлений и дисциплин в стройную, взаимообусловленную совокупность методов системного анализа.

    Теоретические основы разработки, принятия и реализации решений"

    Принятие решений является неотъемлемой частью деятельности человека в любой сфере: политической, эко­номической, культурной, личной жизни и т. п.

    Возможные последствия решений могут затрагивать интересы не только одного человека или нескольких, но и крупных коллективов, регионов и общества в целом. Поэтому, чтобы избежать моральных и материальных издержек, важно знать теорию и практику принятия решений.

    Существенным отличительным признаком управлен­ческого решения является то, что оно принимается при наличии назревшей проблемы. А поскольку такие пробле­мы возникают при управлении любым объектом (про­мышленным предприятием, банком или государственным учреждением) постоянно, то функция принятия решений заключается в постоянном решении в процессе управле­ния той или иной задачи.

    Задача принятия решений направлена на определе­ние наилучшего способа (варианта) действий для дости­жения поставленных целей.

    Цель - это идеальное представление желаемого со­стояния объекта управления или результата деятельно­сти.

    Если фактическое состояние не соответствует желае­мому, то имеет место проблема.

    Выработка плана действий по разрешению проблемы составляет сущность задачи принятия решений.

    Проблемы могут возникать в случае, если функциони­рование системы (объекта и системы управления им) в данный момент не обеспечивает достижения поставлен­ных целей; функционирование системы в будущем не обеспечит достижения поставленных целей; требуется изменение целей деятельности системы.

    Проблема всегда порождается определенными условиями, которые обобщенно называют ситуацией.

    Совокупность проблемы и ситуации образует проблем­ную ситуацию.

    Таким образом, проблемой, требующей принятия ре­шения, принято называть ситуацию, характеризующуюся таким различием между необходимым (желаемым) и фактическим состоянием системы, которое препятствует ее развитию или нормальному функционированию.

    Проблема может быть острой или критической, если проблемная ситуация угрожает самому существованию объекта и (или) системы управления им.

    Таким образом, управленческое решение служит средством разрешения проблемы. В обобщенном виде оно представляет собой предписание к действию, перечень мер, позволяющих привести систему в требуемое состоя­ние или изменить само требуемое состояние. Под решени­ем понимают подход к рациональному выбору как мини­мум из двух вариантов.

    Принятие решений представляет собой подфункцию функции управления. Это процесс, который начинается с возникновения проблемной ситуации и заканчивается выбором решения - действия по устранению проблемной ситуации.

    Какое же место занимает управленческое решение в процессе управления?

    С содержательной точки зрения, управление пред­ставляет собой циклически повторяющийся процесс вы­полнения определенных видов деятельности, которые по­лучили название функций управления. Их состав и содер­жание характеризуют функциональную структуру про­цесса управления. С другой стороны, выполнение функ­ций управления можно представить в виде последова­тельно сменяющих друг друга этапов действий:

    · сбора, обработки и анализа информации о состоянии объекта управления и системы управления им;

    · определения цели функционирования и выработки управленческого решения;

    · доведения решения до исполнителя;

    · реализации решения и изменений в системе.

    Последовательное осуществление субъектом управле­ния логически взаимосвязанных этапов представляет со­бой управленческий цикл, который характеризует орга­низационно-технологическую структуру процесса управ­ления (рис. 1.1).

    Рис. 1.1. Структура управленческого цикла

    В различных технических и социально-экономических системах структура управленческих циклов различная. Однако какой бы тип управленческого цикла мы ни взяли, центральное место в любом из них занимает управленческое решение. Все этапы управленческого цикла непосредственно направлены либо на подготовку решения, либо на его реализацию. Таким образом, управ­ленческое решение пронизывает собой весь управленче­ский цикл.

    Следовательно, процесс выработки и принятия управ­ленческого решения является важнейшей характеристи­кой организационно-технологической структуры процесса управления.

    Управленческое решение - это элемент процесса управления.

    Систем­ный анализ включает ряд этапов (проце­дур), направленных на последовательное приближение к требуемым результатам.

    1. Постановка задачи. Опреде­ляются конечные цели и круг вопросов, требующих решения; анализируются ус­ловия функционирования системы; зада­ются ограничения, накладываемые на ус­ловия функционирования системы.

    2. Исследования. На этом этапе происходят определение, анализ и обоб­щение данных, требуемых для решения проблемы; изучается структура анализи­руемой системы (проблемы); устанавлива­ются связи и возможные программы до­стижения целевой функции проводимого анализа. При этом следует иметь в виду, что обычно существует несколько различ­ных вариантов достижения целей. Важно учесть имеющиеся точки зрения на реша­емую проблему, чтобы исключить заведо­мо нерациональные действия.

    Рассмотренные этапы являются наиме­нее формализуемыми. При определении целей деятельности и путей их достижения основную роль играют умение специалис­тов творчески мыслить, интуиция и т. п.

    3. Анализ. Данная процедура пре­дусматривает построение моделей, выбор критериев эффективности и их использо­вание для предсказания последствий воз­можных действий, сравнение различных вариантов решений в аспекте последствий тех или иных действий. Используемый ма­тематический аппарат (методы и модели) обладает, разумеется, большими возмож­ностями. Однако применять его следует совместно с неформальными методами системного анализа. В противном случае из-за излишних упрощений или даже ис­кажений задача может утратить практичес­кую ценность. Необходимо помнить, что некоторые задачи подлежат решению толь­ко неформальными приемами. Качествен­ное вербальное описание является немало­важным условием системного анализа.

    На основе сравнительного анализа раз­личных вариантов решения возникших проблем вырабатываются рекомендации для принимающих решение. По сути они являются продуктом системного анализа. Последующие этапы процесса системного анализа направлены на доведение полу­ченных рекомендаций до практической реализации.

    4. Предварительное сужде­ние (согласование). С учетом получен­ных данных и дополнительной инфор­мации (при наличии таковой) произво­дятся выбор наилучших путей достижения целей, разработка заключений и рекомен­даций о целесообразном направлении действий.

    5. Подтверждение (эксперимен­тальная проверка) принятых реше­ний.

    6. Окончательное суждение (окончательный выбор наилучшего вари­анта решения).

    7. Реализация принятого ре­шения.

    Процесс системного анализа представлен в виде схемы, соглас­но которой последовательность этапов анализа обычно не ограничивается одно­кратным их воспроизведением и возмо­жен возврат с любого этапа к предыдущим (линии обратной связи), т. е. системный анализ - итеративный (лат. iteratio - пов­торение) процесс.


    В контексте рассматриваемых вопросов привлекает внимание замечание Е. С. Квей-да («Анализ сложных решений», 1969), ко­торый пишет, что системный анализ не оз­начает, что мы делаем что-то совершенно новое, но мы делаем это лучше, чем рань­ше, систематизированно применяя новые методы, включая математические, элект­ронно-вычислительную технику и эксперт­ные оценки, уделяя большее внимание не­определенности и проверке полученных результатов в зависимости от изменения условий, определяющих функционирова­ние системы.

    Спе­цифика системного анализа (И. В. Блауберг с соавторами):

    1. При исследовании объекта как сис­темы описание элементов не носит са­модовлеющего характера, поскольку эле­мент рассматривается не «как таковой», а с учетом его «места» в целом.

    2. В системном исследовании один и тот же «материал», субстант, выступает одновременно обладающим разными ха­рактеристиками, параметрами, функция­ми и даже принципами строения. Это про­является, например, в иерархичности строения систем.

    3. Исследование системы оказывается, как правило, неотделимым от исследова­ния условий ее существования.

    4. Для системного подхода специфич­на проблема создания свойств целого из свойств элементов, и наоборот.

    5. В системном исследовании чисто причинные (в узком смысле этого слова) объяснения функционирования и разви­тия объекта, как правило, недостаточны. Так, для большого класса систем характер­на целесообразность как неотъемлемая черта их поведения, хотя целесообразное поведение не всегда укладывается в рамки причинно-следственной схемы.

    6. Источник преобразований системы или ее функций находится обычно в самой системе. Поскольку это связано с целесо­образным характером поведения систем, важнейшая черта целого ряда системных объектов - самоорганизуемость. Отсюда вытекает обязательное допущение у систе­мы (или ее элементов) некоторого мно­жества индивидуальных характеристик и степеней свободы.

    В заключение, обращаясь к суждениям Дж. Джефферса (1981), уместно подчерк­нуть, что системный анализ, будучи ши­рокой стратегией научного поиска, орга­низует наши знания об объекте таким об­разом, чтобы помочь выбрать нужную стратегию или предсказать результаты од­ной или нескольких стратегий, которые представляются целесообразными тем, кто должен принимать решения. В доста­точно благоприятных случаях стратегия, выбранная посредством системного ана­лиза, в некотором определенном смысле оказывается «наилучшей».

    Системный анализ - упорядоченная и логическая орга­низация данных и информации в виде моде­лей, сопровождающаяся строгой проверкой и анализом самих моделей. При этом матема­тический аппарат и математические кон­цепции используются в рамках системати­зированного научного подхода к решению сложных проблем.

    Лекция 6 .МЕТОДЫ ИССЛЕДОВАНИЯ. ЭМПИРИКО-СТАТИСТИЧЕСКИЕ МОДЕЛИ

    1. Сущность, определения, классификация

    Эмпирико-статистические моделиобъединяют в себе практически все биометрические методы первичной обработки экспериментальной информации. Основная цель построения этих моделей состоит в следующем:

    · упорядочение или агрегирование экологической информации;

    · поиск, количественная оценка и содержательная интерпретация причинно-следственных отношений между переменными экосистемы;

    · оценка достоверности и продуктивности различных гипотез о взаимном влиянии наблюдаемых явлений и воздействующих факторов;

    · идентификация параметров расчетных уравнений различного назначения.

    Часто эмпирико-статистические модели являются "сырьем" и обоснованием подходов к построению моделей других типов (в первую очередь, имитационных).

    Важным методологическим вопросом являетсяопределениехарактера зависимости между факторами и результативными показателями: функциональная она или стохастическая, прямая или обратная, прямолинейная или криволинейная и т.д. Здесь используются теоретико-статистические критерии, практический опыт, а также способы сравнения параллельных и динамичных рядов, аналитических группировок исходной информации, графические методы и др.

    Детерминированный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит явно выраженный функциональный характер, т.е. когда результативный показатель представляется в виде произведения, частного или алгебраической суммы исходных факторов. В этих случаях исследователь сам берет на себя ответственность в том, что:

    · причинно-следственная связь между изучаемыми явлениями действительно существует;

    · эта связь носит именно постулируемый функциональный характер (аддитивный, мультипликативный, кратный или смешанный с заранее подобранными коэффициентами, отражающими субъективный опыт разработчика).

    Стохастический анализ представляет собой обширный класс методов, опирающихся на теоретико-вероятностные представления, теоремы, критерии и методы параметрической и непараметрической статистики.

    Исходный объект в любой системе обработки данных – это эмпирический ряд наблюдений или выборка . Выборки, описывающие явления и процессы в экосистеме, находятся во взаимосвязи, взаимозависимости и обусловленности. При этом каждое явление можно рассматривать и как причину, и как следствие. Одни выборки могут быть непосредственно связаны между собой, образуя подмножества сопряженных данных, другие могут соотноситься друг с другом косвенно.

    Согласно классификации статистических методов, принятой в [Прикладная статистика.., 1987; Орлов, URLа,б], прикладная статистика делится на следующие четыре области:

    o статистика (числовых) случайных величин;

    o многомерный статистический анализ;

    o статистика временных рядов и случайных процессов;

    o статистика объектов нечисловой природы.

    В вероятностной теории статистики выборка – это совокупность независимых одинаково распределенных случайных элементов. Природа этих элементов может быть различной. В классической математической статистике (той, что обычно преподают студентам) элементы выборки – это числа. Многомерный статистический анализ оперирует с векторами и матрицами данных. В нечисловой статистике элементы выборки – это объекты нечисловой природы, которые нельзя складывать и умножать на числа (другими словами, объекты нечисловой природы лежат в пространствах, не имеющих формальной векторной структуры).

    Следует оговориться, что не существует какой-либо однозначной классификации эмпирико-статистических методов. Например, широкий пласт методов кластерного анализа, распознавания образов, анализа экспертных оценок и др., подробно описанных в части 3, занимают промежуточное положение: используя некоторые теоремы классической теории вероятностей, они имеют принципиально детерминированные механизмы поиска и основаны на эвристических алгоритмах.



    Поделиться